
On the Syntax and Semantics of Quantitative Typing

Andreas Abel1

1Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

Workshop on Mixed Inductive-Coinductive Reasoning
19 April 2018

Abel Quantitative Typing Nijmegen 2018 1 / 15

Introduction

Introduction

Quantitative typing generalizes linear typing.
Practical uses:

Cardinality analysis in compilers: strictness, dead code.
Differential privacy.
Erasure in type theory (EPTS, Idris).
Security typing!?

Theory: graded comonads.
Thesis:

The generalization of linear typing to quantitative typing
allows a smooth integration with dependent typing.

Abel Quantitative Typing Nijmegen 2018 2 / 15

Introduction

A Free Theorem from linear typing

Theorem (Bob Atkey)

Given an abstract type K of “keys” with operation

compare : (K ⊗ K) ((Bool⊗ K ⊗ K)

and a program (i.e., closed term)

f : ListK (ListK

then f is a list permutation.

Proof formalized in Agda.
https://github.com/bobatkey/sorting-types.

Abel Quantitative Typing Nijmegen 2018 3 / 15

https://github.com/bobatkey/sorting-types

Introduction

Proof of the free theorem
Category W of lists over K and permutations ./.
W is symmetric monoidal: 1 = empty list, ⊗ is concatenation.
Logical relation |=A ⊆W× A natural in W (i.e., closed under ./).
w |=A a: value a can be constructed exactly from the resources w .

w |=1 () ⇐⇒ w = 1

w |=A1⊕A2 ini (a) ⇐⇒ w |=Ai
a

w |=A⊗B (a, b) ⇐⇒ w ./ w1 ⊗ w2 and w1 |=A a and w2 |=B b
for some w1,w2

w |=A(B f ⇐⇒ w ′ |=A a implies w ⊗ w ′ |=B f (a) for all w ′

Setting: w |=K k iff w is singleton k .
Remember: ListK = 1⊕ (K ⊗ ListK).
Consequence: w |=ListK ks iff w is a permutation of ks.

Abel Quantitative Typing Nijmegen 2018 4 / 15

Introduction

Proof of the free theorem (ctd.)

Fundamental theorem: If Γ ` t : A and w |=Γ σ then w |=A tσ.
` f : ListK (ListK implies 1 |=ListK(ListK f

With ks |=ListK ks have 1⊗ ks |= f (ks), thus ks ./ f (ks).

Remarks:
We call the world w of (mandatorily) consumable resources support.
Elements of closed types (not mentioning K) have empty support.
Eliminators like if : Bool ((A&A) (A use additive conjunction &.

w |=A&B (a, b) ⇐⇒ w |=A a and w |=B b

Subexponentials for n ∈ N where wn = w ⊗ . . .⊗ w (n times):

w |=!nA a ⇐⇒ w ./ w ′n and w ′ |=A a
w |=?nA a ⇐⇒ wn |=A a

Gives quadratic functions like λ2x . (x , x) : !2A (A× A. But affine?
Abel Quantitative Typing Nijmegen 2018 5 / 15

Introduction

Choice of resources
Given an abstract type K with e : K and _·_ : K (K (K and a
boolean b : B consider

λ{0,1}x . if b then x else e : !{0,1}K (K

λ{1,2}x . if b then x else x · x : !{1,2}K (K

There is imprecision in the quantity of usage of x .
In general, we want !qA (B for q ⊆ N.
We extend W by non-empty additive products &i∈q Ai (infima).
Morphisms w ≤ w ′ include dropping of alternatives A&B ≤ A, in
general, &i∈q Ai ≤&j∈q′ Aj for q′ ⊆ q.
Exponent: wq = &n∈q w

n.

w |=!qA a iff w ′ |=A a for some w ′ with w ≤ w ′q.
Uninformed function type A→ B is !NA (B .

Abel Quantitative Typing Nijmegen 2018 6 / 15

Introduction

Quantity lattice
Function classification:

constant linear non-linear

affine strict

function

Expressed as quantitative information q ⊆ N in (!qA) (B :

{0} {1} N \ {0, 1}

{0, 1} N \ {0}

N

Q = {{0}, {1},≤1,≥2,≥1,N}
Abel Quantitative Typing Nijmegen 2018 7 / 15

Introduction

Function composition

Multiplication q · r = {m · n | m ∈ q, n ∈ r} rounded up to be in Q.

q · r {0} {1} ≤1 ≥2 ≥1 N
{0} {0} {0} {0} {0} {0} {0}
{1} {0} {1} ≤1 ≥2 ≥1 N
≤1 {0} ≤1 ≤1 N N N
≥2 {0} ≥2 N ≥2 ≥2 N
≥1 {0} ≥1 N ≥2 ≥1 N
N {0} N N N N N

Addition q + r = {m + n | m ∈ q, n ∈ r} rounded up to be in Q.
Addition for summing usage quantities in two terms.

Abel Quantitative Typing Nijmegen 2018 8 / 15

Introduction

Dependent linear types

Multiplicative linear dependent function and pair types.

w |=ΠAF f ⇐⇒ w ′ |=A a implies w ⊗ w ′ |=F (a) f (a) for all w ′

w |=ΣAF (a, b) ⇐⇒ w1 |=A a and w2 |=F (a) b for some w1,w2
with w ≤ w1 ⊗ w2

Obvious, no?

Abel Quantitative Typing Nijmegen 2018 9 / 15

Introduction

Dependent linear types, what took you so long?

1972: Martin-Löf: (Dependent) Type Theory
1987: Girard: Linear logic
(3 decades later)
2016: McBride: I got plenty of nuttin’
2018: Atkey: Syntax and Semantics of Quantitative Type Theory
What took us so long?
(Wrong) paradigm:

Focus on structural rules (weakening, contraction).
Separate contexts for linear and intuitionistic assumptions.
Same quantity context for term and types.

Γ ` t : A implies Γ ` A : Type

Abel Quantitative Typing Nijmegen 2018 10 / 15

Introduction

Quantitative type theory

Syntax (q, r ∈ Q):

t, u,A,F ::= x name (free variable)
| λqx . t λ-abstraction (binder) with quantity
| t ·q u application with quantity
| Πq,rAF dependent function type (no binder)
| U` sort

Usage calculation |t| : Var→ Q .

|x | = x :1
|t ·q u| = |t|+ q|u|
|λqx . t| = |t| \ x
|U`| = ∅

|Πq,rAF | = |A|+ |F |

Abel Quantitative Typing Nijmegen 2018 11 / 15

Introduction

Quantitative typing

` Γ

Γ ` x : Γ(x)

Γ ` t : Πq,rAF Γ ` u : A

Γ ` t ·q u : F ·r u

Γ, x :A ` t : F ·r x
Γ ` λqx . t : Πq,rAF

q ⊇ |t|x

` Γ

Γ ` U` : U`′
`<`′

Γ ` A : U` Γ ` F : A
r→ U`

Γ ` Πq,rAF : U`

Γ ` t : A Γ ` A ≤ B

Γ ` t : B

Abel Quantitative Typing Nijmegen 2018 12 / 15

Introduction

Subtyping

Γ ` A = A′ : U`

Γ ` A ≤ A′

` Γ

Γ ` U` ≤ U`′
` ≤ `′

Γ ` A′ ≤ A Γ, x :A′ ` F ·r x ≤ F ′ ·r x
Γ ` Πq,rAF ≤ Πq′,rA′ F ′

q ⊆ q′

Abel Quantitative Typing Nijmegen 2018 13 / 15

Introduction

Related Work

Simple types: abundance of quantitative type systems.
McBride 2016: Q = {{0}, {1},N}. Usage in types does not count!
Atkey 2018, QTT: Q semiring.
Brady: implementing McBride/Atkey system in Idris 2.

Abel Quantitative Typing Nijmegen 2018 14 / 15

Introduction

Future work

CwF-like model for my variant of QTT.
Internalize free theorems from linearity?!
Relate to other modal type theories.
Add to Agda.

Abel Quantitative Typing Nijmegen 2018 15 / 15

	Introduction

